Abstract

The natural convection heat transfer characteristics of [Formula: see text] nanofluids comprised of 47 nm, [Formula: see text] and water, with volume fractions ranging from 0.5% through 6%, has been investigated through a set of experimental measurements. The temperature of the heated surface and the Nusselt number of different volume fractions of [Formula: see text] nanofluids natural convection tests clearly demonstrated a deviation from that of pure base fluids (distilled water). In the investigation, a deterioration of the natural convection heat transfer coefficient was observed with increases of the volume fraction of the nanoparticles in the nanofluids. The deterioration phenomenon was further investigated through a visualization study on a 850 nm diameter polystyrene particle/water suspension in a bottom heating rectangular enclosure. The influence of particle movements on the heat transfer and natural flow of the polystyrene particle/DI water suspension were filmed, and the temperature changes on the heating and cooling surfaces were recorded. The results were analyzed in an effort to explain the causes of the natural convection heat transfer deterioration of the 47 nm [Formula: see text] nanofluids observed in the experiments. The visualization results confirmed the natural convective heat transfer deterioration, and further explained the causes of the deterioration of the nanofluids natural convective heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.