Abstract

When explosives detonate in a confined space, repeated boundary reflections result in complex shock interactions and the formation of a uniform quasi-static pressure (QSP). For fuel-rich explosives, mixing of partially oxidized detonation products with an oxygen-rich atmosphere results in a further energy release through rapid secondary combustion or ‘afterburn’. While empirical formulae and thermochemical modelling approaches have been developed to predict QSP, a lack of high-fidelity experimental data means questions remain around the deterministic quality of confined explosions, and the magnitude and mechanisms of afterburn reactions. This article presents experimental data for RDX- and PETN-based plastic explosives, demonstrating the high repeatability of the QSP generated in a sealed chamber using pressure transducers and high-speed infrared thermometry. Detonations in air, nitrogen and argon atmospheres are used to identify the contribution of afterburn to total QSP, to estimate the duration of afterburn reactions and to speculate on the flame temperature associated with this mechanism. Computational fluid dynamic modelling of the experiments was also able to accurately predict these effects. Understanding and quantifying explosions in complex environments are critical for the design of effective protective structures: the mechanisms described here provide a significant step towards the development of fast-running engineering models for internal blast events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.