Abstract
Abstract In this work, an air-blast atomizing column was used to study the CO2 capture performance with aqueous MEA (mono-ethanol-amine) and NaOH solutions. The effects of gas flow rate, the liquid to gas ratio (L/G), the CO2 concentration on the CO2 removal efficiency (η) and the volumetric overall mass transfer coefficient (KGav) were investigated. The air-blast atomizing column was also compared with the pressure spray tower on the studies of the CO2 capture performance. For the aqueous MEA and NaOH solutions, the experimental results show that the η decreases with increasing gas flow rate and CO2 concentration while it increases with increasing L/G. The effects on KGav are more complicated than those for η. When the CO2 concentration is low (3 vol%), KGav increases with increasing gas flow rate while decreases with increasing L/G. However, when the CO2 concentration is high (9.5 vol%), as the gas flow rate and L/G increases, KGav increases first and then decreases. The aqueous MEA solution achieves higher η and KGav than the aqueous NaOH solution. The air-blast atomizing column shows a good performance on CO2 capture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.