Abstract

Grid shells supporting transparent or opaque panels are largely used to cover long-spanned spaces because of their lightness, the easy setup, and economy. This paper presents the results of experimental static and dynamic investigations carried out on a large-scale free-form grid shell mock-up, whose geometry descended from an innovative Voronoi polygonal pattern. Accompanying finite-element method (FEM) simulations followed. To these purposes, a four-step procedure was adopted: (1) a perfect FEM model was analyzed; (2) using the modal shapes scaled by measuring the mock-up, a deformed unloaded geometry was built, which took into account the defects caused by the assembly phase; (3) experimental static tests were executed by affixing weights to the mock-up, and a simplified representative FEM model was calibrated, choosing the nodes stiffness and the material properties as parameters; and (4) modal identification was performed through operational modal analysis and impulsive tests, and then, a simplified FEM dynamical model was calibrated. Due to the high deformability of the mock-up, only a symmetric load case configuration was adopted.

Highlights

  • Contextualization of the workAs spatial lightweight structures, free-form constructions played a prominent role in recent years thanks to more reliable computational techniques, increased knowledge of building materials, and new architectural expressivity

  • This paper presents the results of experimental static and dynamic investigations carried out on a large-scale freeform grid shell mock-up, whose geometry descended from an innovative Voronoi polygonal pattern

  • A four-step procedure was adopted: (1) a perfect finite-element method (FEM) model was analyzed; (2) using the modal shapes scaled by measuring the mock-up, a deformed unloaded geometry was built, which took into account the defects caused by the assembly phase; (3) experimental static tests were executed by affixing weights to the mockup, and a simplified representative FEM model was calibrated, choosing the nodes stiffness and the material properties as parameters; and (4) modal identification was performed through operational modal analysis and impulsive tests, and a simplified FEM dynamical model was calibrated

Read more

Summary

Introduction

Free-form constructions played a prominent role in recent years thanks to more reliable computational techniques, increased knowledge of building materials, and new architectural expressivity. Grid shells are afflicted by some static problems as deformability, buckling, and imperfection sensitivity (Schlaich and Schober 1996, 1997) and by constructional problems such as nodes assembly, feasibility of the panels geometry and curvature, connectivity of the elements, etc. A large displacement analysis typically applies to a grid shell due to the intrinsic deformability caused by its lightness. As they carry loads mainly by compressive forces, buckling failures (local, global, snap-through, or even worse combinations of previous) should be avoided. Stability analysis is carried out considering both secondorder effects and imperfections, and a strong abatement of the buckling multiplier with respect to the ideally perfect structure is usually detected (Bacco and Borri 1993; Bulenda and Knippers 2001; Cai et al 2013; Dini et al 2013; Gioncu 1995)

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call