Abstract
This work presents the nature of N-benzyloxycarbonyl-l-serine through quantum chemical calculations and spectral analysis. The optimized geometry and vibrational frequencies were computed by density functional theory. The geometric parameters were theoretically obtained and those values were compared with experimental data. The calculated vibrational wavenumbers of the heading compound display exact agreement with the recorded spectrum. The frontier molecular orbital band gap energy confirmed that the heading compound has a good reactivity and stability of the molecule. The theoretical UV-Vis spectrum turned into analysis in gas and with different solvents. The nuclear magnetic resonance spectrum was calculated. Each evaluation was in comparison with the experimental ones. The molecular electrostatic potential energy map is an effective model to identify electrophilic and nucleophilic sites. Further, natural bond orbital and Mulliken charge analysis had been additionally calculated. Drug-likeness studies were carried out. This result shows that the heading compound has a good biological activity. Anticancer activity was tested based on the molecular docking evaluation and it was diagnosed that the heading compound can act as a potential inhibitor of liver cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.