Abstract

Mine water inrush is very common in China and can cause hysteretic and severe damages to the safety production of coal mines. Essentially, water inrush from coal floor can be attributed to the connection of cracks and the formation of water channel in floor rocks under the interaction of stress field and seepage field. In this paper, the interaction between cracks, stress field, and seepage field in floor rocks was studied by physical simulation; the evolution law of water inrush from floor cracks was obtained under the fluid-solid coupling effect, and the monitoring of rock stress and seepage pressure was realized by virtue of soil pressure and pore-pressure sensors. The results indicated that the permeability of floor rocks had regional and temporal characteristics due to the cyclical variation of in-situ floor stress. The high-permeability zone occurred under the early mining stress area, and gradually extended and connected inside the floor. As a result, more confined water could flood into the connected cracks and thus changed the seepage field in front of working face. This work provides new approaches and knowledge for researching coal floor water inrush and has important significances for the prevention of coal water disasters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.