Abstract

We experimentally demonstrate simulation of two entangled quantum bits using classical fields of two frequencies and two polarizations. Multiplication of optical heterodyne beat signals from two spatially separated regions simulates coincidence detection of two particles. The product signal so obtained contains several frequency components, one of which can be selected by bandpass frequency filtering. The bandpassed signal contains two indistinguishable, interfering contributions, permitting simulation of four polarization-entangled Bell-like states. These classical field methods may be useful in small scale simulations of quantum logic operations that require multiparticle entanglement without collapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.