Abstract

SiMo ductile cast iron combines ease of part fabrication with good mechanical properties, including a usable plasticity range. Its poor corrosion resistance inherited from grey cast iron could be alleviated through alloying with Al or Cr additions capable of forming a dense oxide scale protecting the substrate. However, the presence of Al and Cr in cast iron tends to make the material brittle, and their optimum alloying additions need to be studied further. The present work was aimed at investigating the effect of crystallization rates on microstructure changes during directional crystallization of SiMo-type alloys with up to 3.5% Al and 2.4% Cr. The experiment was performed using the Bridgman–Stockbarger method. The tubular crucible was transferred from the hot section to cold section at rates ranging from 5 mm/h to 30 mm/h with a 4/5 crucible length and then quenched. The introduced Al promoted graphitization up to a point, wherein, at the highest applied addition, the graphite precipitation preceded crystallization of the rest of the melt. A rising level of Cr in these alloys from 1% to 2.4% resulted in the formation of low and high contents of pearlite, respectively. The higher crystallization rates proved effective in increasing the ferrite content at the expense of pearlite. In the investigated cast iron samples with smaller applied alloying additions, Widmanstätten ferrite or ausferrite, i.e., fine acircular phase, were often found. The switch from directional crystallization to quenching caused a transition from a liquid to solid state, which started with nucleation of islands of fine austenite dendrites with chunky graphite eutectic separating them. As these islands expanded, they pushed alloying additions to their sides, promoting carbide or pearlite formation in these places and forming a super-cell-like structure. The performed experiments helped gather information concerning the sensitivity of the microstructure of SiMo cast iron modified with Al and Cr to crystallization rates prevailing in heavy cast structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call