Abstract

Anyons have exotic statistical properties, fractional statistics, differing from Bosons and Fermions. They can be created as excitations of some Hamiltonian models. Here we present an experimental demonstration of anyonic fractional statistics by simulating a version of the Kitaev spin lattice model proposed by Han et al[Phys. Rev.Lett. 98, 150404 (2007)] using an NMR quantum information processor. We use a 7-qubit system to prepare a 6-qubit pseudopure state to implement the ground state preparation and realize anyonic manipulations, including creation, braiding and anyon fusion. A $\pi/2\times 2$ phase difference between the states with and without anyon braiding, which is equivalent to two successive particle exchanges, is observed. This is different from the $\pi\times 2$ and $2\pi \times 2$ phases for Fermions and Bosons after two successive particle exchanges, and is consistent with the fractional statistics of anyons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.