Abstract

Hydrogen plasma with a density of 3×1014 cm−3 and electron temperature of 20 eV is injected parallel to a 0.1 T B field, into hydrogen (and helium) neutral gas at 0.1–2 Torr. This plasma is opaque to molecular hydrogen but transparent to Franck–Condon neutrals. The axial density and temperature scale length increased with decreasing gas pressure but were insensitive to plasma density and axial magnetic field strength. The plasma decay is explained by radial ion diffusion resulting from collisions with fast neutrals while the fast neutral density is determined by the radial pressure balance between fast neutrals and the cold background gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.