Abstract

The deformation and damage evolution of sandstone after heat treatment greatly influence the efficient and safe development of deep geothermal energy extraction. To investigate this issue, laboratory confined compression tests and numerical simulations were conducted on pre-holed sandstone specimens after heat treatment. The laboratory test results show that the failure modes are closely related to the heat treatment temperature, with increasing treatment temperature, the failure modes change from mixed and shear modes to a splitting mode. The cracks always initiate from the sidewalls of the hole and then propagate. The failure process inside the hole proceeds as follows: calm period, particle ejection period, rock fragment exfoliation period and rock failure period. The specimens have different final failure features for the entire rock after heat treatment, but have the same failure features inside the hole. These phenomena can be explained by numerical simulations. The numerical simulations reveal that the failure modes in the numerical results agree very well with those observed in the experimental results. The damage zone always occurs at sidewalls of the hole and then propagates to the entire rock affected by shear or tensile damage. From 20°C to 200°C, thermal effect may promote shear damage and restrain tensile damage, while from 200°C to 800°C, thermal effect promotes tensile damage and restrains shear damage. Notably, the damage zone near the sidewalls of the hole has the same distribution range and pattern. Finally, the differences in the mechanisms due to increasing heat temperature are evaluated using scanning electron microscope (SEM) observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.