Abstract
The common challenge of all aerospace advancements is greening the air transport. This led the recent research programs towards the study of “metamorphic” wing structures, capable of adapting their geometry to the different conditions of flight. The development of morphing structures allows the reduction of drag and the increase of range, together with the growth of load control effectiveness. In this context, the European research project SARISTU addressed the physical integration of smart and morphing structural concepts, by implementing them on a true scale outer wing belonging to a CS-25 category aircraft finally tested in a large Wind Tunnel. In the framework of SARISTU project, the design of an Adaptive Trailing Edge Device was developed. The morphing skin concept consisted of a segmented skin, with aluminum and silicone foam strips covered by a protective silicone top-layer. A two-bay demonstrator was tested inside the Wind Tunnel at the Department of Industrial Engineering of the University of Naples “Federico II”; experimental analyses were performed in order to verify whether the silicone parts could show out of plane bumps induced by the aerodynamic loads occurring during the Wind Tunnel test campaign. A photogrammetric optic approach was adopted, in order to reach the aforementioned targets in a non-invasive way; such methodology was selected due the high resolution assured at a very low implementation costs. Obtained results allowed to confirm the demonstrator well done design and opened the doors to the next experimental test campaign performed in TsAGI Russian Wind Tunnel, on the outer wing equipped with a five-bay demonstrator of the Adaptive Trailing Edge Device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.