Abstract

We present our experimental setup to produce ultracold strongly correlated fermionic superfluids made of a two-component spin-mixture of 6Li atoms. Employing standard cooling techniques, we achieve quantum degeneracy in a single-beam optical dipole trap. Our setup is capable of generating spin-balanced samples at temperatures as low as T/TF = 0.1 containing up to 5 × 10^4 atomic pairs. We can access different superfluid regimes by tuning the interparticle interactions close to a broad magnetic Feshbach resonance. In particular, we are able to explore the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regimes. In the near future, we plan to study different collective excitations in these superfluid samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.