Abstract

A laser-based angle resolved photoemission (ARPES) system utilizing 6 eV photons from the fourth harmonic of a mode-locked Ti:sapphire oscillator is described. This light source greatly increases the momentum resolution and photoelectron count rate, while reducing extrinsic background and surface sensitivity relative to higher energy light sources. In this review, the optical system is described, and special experimental considerations for low-energy ARPES are discussed. The calibration of the hemispherical electron analyzer for good low-energy angle-mode performance is also described. Finally, data from the heavily studied high T(c) superconductor Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) is compared to the results from higher photon energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.