Abstract

Graph states-one of the most representative families of multipartite entangled states-are important resources for multiparty quantum communication, quantum error correction, and quantum computation. Device-independent certification of highly entangled graph states plays a prominent role in quantum information processing tasks. Here we have experimentally demonstrated device-independent certification for multipartite graph states by adopting the robust self-testing scheme based on scalable Bell inequalities. Specifically, the prepared multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and linear cluster states achieve a high degree of Bell violation, which are beyond the nontrivial bounds of the robust self-testing scheme. Furthermore, our work paves the way to the device-independent certification of complex multipartite quantum states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call