Abstract

The seismic behavior of the independent type of a stone masonry loess cave (SMLC) is examined. A tri-directional shake table test was employed on 1:4 reduced-scale specimen of SMLC. The specimen represented a typical traditional dwelling of the loess region in China, consisting of unreinforced masonry walls and inner loess, without any seismic treatment. The dynamic parameters directly measured by the test include the acceleration response, displacement response of each key position of the stone masonry loess cave, and the detailed record of the damage form of the structure under each loading. The analysis results indicated that the simplified model design method not only satisfied the main similarity relationship of the reduced-scale structure shaking table test, but also achieved excellent test results. Through the calculation results to determine the torsion angle of the node and the deformation between the layers, corresponding strengthening measures could be proposed for the life extension protection of this traditional building. Finally, according to the analysis of the test results, the damage state and damage level of the prototype of the SMLC is established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call