Abstract
In this paper, we investigate multiple snapshot fusion of textural features for palmvein recognition including identification and verification. Although the literature proposed several approaches for palmvein recognition, the palmvein performance is still affected by identification and verification errors. As well-known, palmveins are usually described by line-based methods which enhance the vein flow. This is claimed to be unique from person to person. However, palmvein images are also characterized by texture that can be pointed out by textural features, which relies on recent and efficient hand-crafted algorithms such as Local Binary Patterns, Local Phase Quantization, Local Tera Pattern, Local directional Pattern, and Binarized Statistical Image Features (LBP, LPQ, LTP, LDP and BSIF, respectively), among others. Finally, they can be easily managed at feature-level fusion, when more than one sample can be acquired for recognition. Therefore, multi-snapshot fusion can be adopted for exploiting these features complementarity. Our goal in this paper is to show that this is confirmed for palmvein recognition, thus allowing to achieve very high recognition rates on a well-known benchmark data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.