Abstract

This paper synthesizes experimental results with computational results towards development of a reliable heat transfer correlation for gravity driven annular wavy condensing flows inside a vertical tube. For fully condensing flows of pure vapor (FC-72) inside a vertical cylindrical tube of 6.6 mm diameter and 0.7 m length, the experimental conditions are typically annular wavy and they cover: mass flux G over a range of 2.9 kg/m 2 s ⩽ G ⩽ 87.7 kg/m 2 s, temperature difference Δ T of 5–45 °C, and length of full condensation x FC in the range of 0 < x FC < 0.7 m. The range of flow conditions over which there is good (within 15%) and poor (15–30% or >30%) agreement with the theory and modeling assumptions are discussed and these conditions have been identified. The paper also refers to key experimental results with regard to sensitivity of the flow to time-varying or quasi-steady (i.e. steady-in-the-mean) impositions of pressure at both the inlet and the outlet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.