Abstract

An experimental technique is described for observing the effects of switching transients in digital MOS circuits that perturb analog circuits integrated on the same die by means of coupling through the substrate. Various approaches to reducing substrate crosstalk (the use of physical separation of analog and digital circuits, guard rings, and a low-inductance substrate bias) are evaluated experimentally for a CMOS technology with a substrate comprising an epitaxial layer grown on a heavily doped bulk wafer. Observations indicate that reducing the inductance in the substrate bias is the most effective. Device simulations are used to show how crosstalk propagates via the heavily doped bulk and to predict the nature of substrate crosstalk in CMOS technologies integrated in uniform, lightly doped bulk substrates, showing that in such cases the substrate noise is highly dependent on layout geometry. A method of including substrate effects in SPICE simulations for circuits fabricated on epitaxial, heavily doped substrates is developed. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.