Abstract

IntroductionPathomechanism of HRS is still poorly understood. The aim of our study was: (1) to test whether different strains of rats could develop typical HRS, and (2) to estimate the influence of activation and inhibition of nitric oxide for development of renal failure in course of HRS.Material and methodsFirst, we used 16 of Wistar and 16 of Sprague-Dawley rats in galactosamine model of HRS. Next, we used 48 of SDR rats, which received saline, N-nitro-L-arginine or L-arginine before and after liver damage. Twenty four hours urine and blood samples were collected 48 h after saline or Ga1N injection. Biochemical parameters were determined in serum or urine and then creatinine clearance and osmolality clearance were calculated. Liver and kidney tissues were collected for histopathological examination.ResultsLiver failure developed in all tested groups with significant increase of bilirubin (p < 0.001), ALT (p < 0.001) and ammonia (p < 0.001). Nevertheless we did not achieve any evidence of renal failure in Wistar, but we found typical renal failure in Sprague-Dawley group with significant decrease in creatinine clearance (p < 0.0012) and increase in concentration of creatinine and urea (p < 0.001) and (p < 0.001) respectively. Inhibition of NOS prevented development of renal failure with significant improvement of GFR both before (p < 0.0017) and after (p < 0.003) Ga1N injection. Injection of L-arginine after Ga1N injection did not caused significant improvement of GFR.ConclusionsOur study showed, that genetic factors might be responsible for development of renal failure in course of HRS and nitric oxide play important role in acute model of this syndrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call