Abstract
The counter rotating wing tip vortices produced by the aircraft continues to be a big concern for the aviation industry and the aircraft manufacturers due to its hazardous effects on the flight safety and aircraft efficiency. The strength of the vortices poses severe problems to the aircraft operations. Manufacturers developed various wingtip devices to alleviate this problem, but still it is not fully understood and solved. In this thesis, the effectiveness of using a half delta wing at the tips is investigated. The flow field over a low aspect ratio NACA 0015 wing fitted with a slender sharp half delta wing with a leading edge sweep angle 700 at a Reynolds number 1.87 ×105 is investigated. Particle image velocimetry is used to quantify the vortex structure and force balance measurements are used to calculate the aerodynamic data of the wing. The peak vorticity, peak tangential velocity are decreased due to the addition of half delta wing. The over-all radius of the wingtip vortex increased showing a diffused vortex due to the addition of the half delta wing. The core circulation is decreased leading to a lower strength vortex. Though the tip device increased the drag, it increases the aerodynamic efficiency through the improvement in L/D
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.