Abstract

In the present paper, the long rod penetration experiments of tungsten-fiber/Zr-based metallic glass matrix composite (WF/Zr-MG) and tungsten heavy alloy (93W) into Q235 steel targets are conducted by employing H100 smooth bore artillery within the speed range from 765 m/s to 1809 m/s. The diameter of the long rods is 19 mm and its aspect ratio is 10. Different from the mushrooming of 93W rod nose, the self-sharpening phenomenon is observed in the nose of WF/Zr-MG rod. The experimental results indicate that the WF/Zr-MG rod has much better penetrating performance than the 93W rod when the penetration velocity exceeds 1000 m/s. Integrated with the metallographic analysis of the residual rods, the failure modes of WF/Zr-MG rod are identified systemically. The deformation and shear failure of WF/Zr-MG composite mainly occurs in the edge layer of the rod nose during the high-speed penetration and it displays the localizing and sharpening features. The thickness of the edge layer in the rod nose maintains a dynamic balance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.