Abstract

Abstract Here, we analyze the instability characteristics of the overlying strata structure that characterize shallow-depth seams under insufficient goaf in Yushenfu mining area. To simulate the No. 20107 longwall interval working face situated in Nanliang Coal Mine, physical simulation, an acoustic emission (AE) monitoring system, a stress acquisition system and a total station were used. The results indicate that during interval goaf formation, which is correlated with mining, the immediate roof collapses, and the main roof strata remains stable. Gradually, the stress that acts on the temporary coal pillar (TCP) gradually exhibits the ‘uniform increase–accelerated increase catastrophe instability’ change characteristics. Due to the concentrated load of the overlying strata, the bearing capacity of the TCP gradually deteriorates until the catastrophic instability occurs, and the unstable roof strata forms a ‘W-shaped voussoir beam’ structure. The research results provide evidence for the strata control that is associated with shallow-seam mining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call