Abstract

Reactor coolant pump is one of the key equipment of the coolant loop in a pressurized water reactor system. Its safety relies on the characteristics of the rotordynamic system. For a canned motor reactor coolant pump, the liquid coolant fills up the clearance between the metal shields of the rotor and stator inside the canned motor, forming a clearance flow. The fluid induced forces of the clearance flow in canned motor reactor coolant pump and their effects on the rotordynamic characteristics of the pump are experimentally analyzed in this work. A vertical experiment rig has been established for the purpose of measuring the fluid induced forces of the clearance. Fluid induced forces of clearance flow with various whirl frequencies and various boundary conditions are obtained through the experiment. Results show that clearance flow brings large mass coefficient into the rotordynamic system and the direct stiffness coefficient is negative under the normal operating condition. The rotordynamic stability of canned motor reactor coolant pump does not deteriorate despite the existence of significant cross-coupled stiffness coefficient from the fluid induced forces of the clearance flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call