Abstract

The roughness origin of machined surfaces is caused by the following physical causes: the copying of the shape and the roughness of the cutting part of the tool into the workpiece, the existence of vibration of the tool, and the existence of the build-up edge (BUE) on the cutting edge. The current work aims to analyze the vibration amplitude of tools. The roughness of the machined surfaces was observed on hardened steel workpieces. Internal turning technology was used, and we used several different boring bars (steel; carbide; tuned mass damper—TMD; impact damper—ID) and an internal turning operation using CBN inserts. We revealed the tool’s slenderness coefficient (TSC) values for stable cutting operations. For the steel holder, the value is TSC ≤ 4.25; for the carbide holder, the value is TSC ≤ 5.5; for the TMD holder, the value is 4.5 ≤ TSC ≤ 7.75; and for the ID holder, the value is TSC ≤ 8. The surface’s roughness was practically unchanged within the limits of stable machining. However, if the tools exceed the presented stable limits, vibration and roughness parameters deteriorate significantly; an example parameter (Ra) deteriorated from 0.350 μm to 1.832 μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call