Abstract

The stability of geogrid-reinforced soil structure is closely related to the interface characteristics between geogrid and soil. However, the creep behavior of the soil–geogrid interface is still unrevealed. In this study, using a modified stress-controlled pullout device, influence of the normal pressure, dry density, and water content on creep behavior of interface of compacted loess and high-density polyethylene (HDPE) geogrid is investigated. A three-parameter empirical model and a Merchant element model were established through fitting analysis. Analysis results show that the normal pressure, dry density, and water content have significant effects on the creep shear displacement of the reinforced soil interface. Under the same pullout level, creep displacement of the interface increases with the increase of water content and decreases with the increase of dry density and normal pressure. Both the three-parameter empirical model and Merchant element model can describe the creep characteristics of the reinforced soil interface. The Merchant model is more accurate in the early stage, while the three-parameter empirical model is more suitable for predicting the long-term creep deformation of the interface of compacted loess and geogrid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.