Abstract

Acoustic source localization in a large pressure vessel or a storage tank-type cylindrical structure is important in preventing structural failure. However, this can be challenging, especially for cylindrical pressure vessels and tanks that are made of anisotropic materials. The large area of the cylindrical structure often requires a substantial number of sensors to locate the acoustic source. This paper first applies conventional acoustic source localization techniques developed for the isotropic, flat plate-type structures to cylindrical structures. The experimental results show that the conventional acoustic source localization technique is not very accurate for source localization on cylindrical container surfaces. Then, the L-shaped sensor cluster technique is applied to the cylindrical surface of the pressure vessel, and the experimental results prove the applicability of using this technique. Finally, the arbitrary triangle-shaped sensor clusters are attached to the surface of the cylindrical structure to locate the acoustic source. The experimental results show that the two acoustic source localization techniques using sensor clusters can be used to monitor the location of acoustic sources on the surface of anisotropic cylindrical vessels, using a small number of sensors. The arbitrarily triangle-shaped sensors can be arbitrarily placed in a cluster on the surface of the cylindrical vessel. The results presented in this paper provide a theoretical and experimental basis for the surface acoustic source localization method for a cylindrical pressure vessel and lay a theoretical foundation for its application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.