Abstract

Beam pumping unit is widely applied in the oilfield area. However, the falling process of the pumping unit horsehead causes large-amplitude variations of the motor torque and greatly reduces the efficiency of the system. This paper proposes a late-model hydraulic-electromotor hybrid system which can realize energy recovery and assist electromotor work. The hybrid system can improve the matching characteristics between the electromotor and the pumping unit. A mathematical model is built and verified by experiment studies. According to the experimental and simulation results, it can be concluded that energy recovery function of the designed hydraulic-electromotor hybrid system is demonstrated to be effective, and the electromotor can keep the output power stable. As the efficiency of the hybrid power system affects the energy-saving effect, this paper establishes the efficiency model of the system and studies the key parameters affecting the efficiency of the system through experiments and simulation. The key parameters include the minimum displacement ratio of the pump and hydraulic motor, working pressure, and transmission ratio. This paper proposes a parameter optimization design method of the hydraulic-electromotor hybrid system. Under the optimal parameter combination, the hydraulic-electromotor hybrid system efficiency can reach 92%, and the electric power transmission efficiency of the system can be raised to 75%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.