Abstract

Semi-insulating gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS) have great potential for high voltage switching application, however, the utility is restricted by surface flashover which would result in breakdown. In this paper, a model of photo-activated charge wave was proposed based on the theory of photo-activated charge domain (PACD) in GaAs PCSS, and moderate suppression of PACD formation by loading the semiconductor surface with dielectric material was investigated theoretically and experimentally. Current as high as 3.7 kA was obtained at 28 kV, implying that this method can effectively inhibit the surface flashover and improve the service life of DC charged GaAs PCSS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.