Abstract

Grinding is a main method of silicon nitride ceramic in finish machining stage. The technical parameters had an important influence on the surface quality of silicon nitride ceramic. The silicon nitride ceramic spindle was ground by the high-speed cylindrical grinder MGKS1432-H. The relations between different speed parameters and surface roughness were researched. The cylindrical and internal high speed grinding experiments of silicon nitride ceramics spindle were carried out. The S-4800 scanning electron microscope was used to explore the roughness change rule of the grinded surface under the condition of only changed grinding wheel’s velocity. In the process of cylindrical and internal grinding on silicon nitride ceramic spindle, the roughness tended to decrease with the linear velocity increasing, and increased with the radial feed speed increasing and decreased with the wheel shaft’s oscillation speed increasing. The result indicated that the linear velocity of grinding wheel influenced the sample’s roughness most. The effect of radial feed speed on the roughness is next only to the effect from linear velocity. The effect of shaft’s oscillation speed on the roughness is the lowest of the three factors. In the process of internal grinding, with the linear velocity increasing, the ceramic material transformed from brittle rupture to plastic deformation and the roughness appeared one peak. These results were very helpful to optimize the grinding parameters and improve grinding efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call