Abstract

In view of the existing technical problems about treatment of heavy metal pollution, a new organic heavy metal chelator—dipropyl dithiophosphate has been developed. This paper focuses on the mechanism about the laboratory synthesis of dipropyl dithiophosphate and chelate heavy metal, discusses the effects of pH value, added quantity of chelator, reactive time and coexistence of several heavy metal ions on the treatment effectiveness, and compares the stability of chelate complex with conventional neutral precipitation method. The results of the experiment show that, within the scope of pH 3–6, for the wastewater with the concentration of lead, cadmium, copper and mercury being 200 mg/L, dipropyl dithiophosphate enjoys a removal rate about these elements up to over 99.9%, and the concentrations of the lead, cadmium, copper and mercury in the wastewater after treatment are less than 1, 0.1, 0.5 and 0.05 mg/L, respectively, which meet the limit value of concentration stipulated in the Integrated Wastewater Discharge Standard (GB8978-1996). And the treatment effectiveness are not affected by pH value and coexistent heavy metal ions, which makes up the deficiency that neutral precipitation must be used under the condition of high alkalinity. The optimum quantity of dipropyl dithiophosphate chelator added is 1.2 times as much as stoichiometric amount and the optimum reactive time is 20 min for lead, cadmium and copper, and 30 min for mercury. Within the scope of pH 3–9, each heavy metal ion release of chelate complex will decrease along with increased pH value. But under any pH conditions, the release of heavy metal ions in hydroxide is far higher than that in chelate complex, therefore reducing the risk of polluting the environment again.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call