Abstract
This study is intended to explore the role of human umbilical-cord-derived mesenchymal stem cells (HUC-MSCs) in nerve end-to-side anastomosis, as well as in the induction and promotion of growth of nerve lateral bud. The chitosan nerve conduit was prepared based on the biological characteristics of chitosan, and the nerve conduit was filled with HUC-MSCs, and was used to bridge the nerve end-to-side anastomotic stoma. The experimental animals were randomly assigned into three groups (10 in each group), and the nerve end-to-side anastomosis was conducted: (1) group A (control group): traditional tibial nerve-common peroneal nerve end-to-side anastomosis; (2) group B (experimental group 1): tibial nerve-common peroneal nerve end-to-side anastomotic stoma bridged with chitosan nerve conduit; (3) group C (experimental group 2): tibial nerve-common peroneal nerve end-to-side anastomotic stoma bridged by chitosan nerve conduit filled with HUC-MSCs. General morphological observation, nerve electrophysiology, and anti-S-100 immunohistochemistry were performed. All experimental animals survived, and no infections were found at operative incisions. The nerve continuity was in good condition through visual observation when sampling, which is mild adhesion to the surrounding tissue and easy to be separated. 12W HUC-MSCs chitosan composite nerve conduits were degraded completely after operation. Electrophysiological test showed that the nerve conduction velocity (NCV) in group C was significantly higher than that in group A or group B (p<0.01). There were no significant differences between NCVs of group A and group B. Toluidine blue staining and transmission electron microscope showed that the number of the medullated fibers and the myelin sheath thickness in group C were larger than those in group A or B. There were no significant differences between the numbers of the medullated fibers and between the myelin sheath thicknesses of groups A and B. By means of anti-S-100 immunohistochemistry, the arrangement of a large number of brown-red proliferating schwann cells around the regenerated nerve fibers in group C could be found, while fewer and sparse brown-red matters and very poor growth of schwann cells could be observed in groups A and B. Slightly more favorable situation could be observed in group B compared with group A. HUC-MSCs play obviously an important role in promoting nerve regeneration during the nerve end-to-side anastomosis, which induces the growth of axis bud, accelerates the growth velocity of regenerated fiber, and promotes the growth and maturity of schwann cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.