Abstract

In this study, air/water vapor mixture with ash particles was used to simulate actual dryer exhaust gas. An experimental study of the convection–condensation heat transfer characteristics of air/vapor mixtures with ash particles across horizontal tube-bundles was conducted under various water vapor mass fractions and concentrations of ash particles. The variation of convection–condensation heat transfer coefficient with time presented four different types, as follows: almost did not change with time; decreased first, then reached stable values; decreased continuously in the experimental time; and decreased rapidly, decreased slowly, and decreased rapidly, with potential to increase again. In general, the convection–condensation heat transfer coefficient decreased with increasing concentration of ash particles and increased with increasing water vapor mass fraction. The reducing effect on the convection–condensation heat transfer coefficient by ash deposition would be weakened by increasing the water vapor mass fraction, but the heat exchanger would be blocked further easily by increasing the concentration of ash particles. Then, a distribution diagram was drawn to present different types of convection–condensation heat transfer curves under various working parameters. Sootblowing operation strategies were proposed under different working conditions to provide reference for the actual operation of the waste heat recovery heat exchanger for dryer exhaust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.