Abstract

The ejection of the plasma plume produced by laser ablation is an important process for inducing mechanical effects. Therefore, in this paper, the characteristics of the plasma plume are investigated in order to analyze the impulse coupling mechanism with two laser spot diameters, 300 μm and 1100 μm, respectively. The impulse generated by laser irradiating the copper target was measured by the torsion pendulum, and the plasma plume was investigated using fast photography and optical emission spectroscopy. The experimental results show that the optimal laser intensity is independent of the beam spot size. However, when the laser intensity is greater than 2.8 × 109 W/cm2, the impulse coupling coefficient with the small beam spot starts to gradually decrease, while that with the large beam spot tends to saturate. Additionally, the stream-like structure and the semi-ellipsoid structure of the plasma plume were observed, respectively. Furthermore, the electron number density was estimated using the Stark broadening method, and the effect of the plasma plume on the impulse coupling coefficient was discussed. The results provide a technical reference for several applications including orbital debris removal with lasers, laser thrusters, and laser despinning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.