Abstract

In this study, experimental studies on atomization process and dust reduction performance of four swirl nozzles with different inlet/outlet diameter ratio (D) were performed. The results of the atomization process study of the nozzle show that with the increase of D, the droplet breakup range of the spray field is gradually increasing, but the droplet breakup intensity of the spray field is gradually decreasing. At D = 3.33 and 3.63, droplet breakup occurs mainly in the range of 0-4mm in the strong turbulent region. At D = 3.75, droplet breakup occurs mainly in the range of 0-2mm in the strong turbulent region. At D = 3.96, droplet breakup occurs mainly in the range of 0-1mm in the strong turbulent region. Droplet breakup in the spray field at D = 3.33 and D = 3.67 was better than that at D = 3.75 and D = 3.96. From the dust reduction experimental results, the dust reduction efficiency increases and then decreases with the increase of D. The dust reduction efficiency is highest among the four nozzles at D = 3.67. Based on the dust reduction curves of four different D of nozzles, it is predicted that the optimal dust reduction condition will be achieved at D of 3.60, which provides a reference for the design and optimization of nozzles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.