Abstract

In order to study the failure mode and anti-explosion performance of PODZ coated square reinforced concrete slabs under contact explosion, the PODZ coated square reinforced concrete slabs were tested under contact explosion conditions. In the test, the reinforced concrete slab commonly used in floor design in building structures was used as the research object. Through 11 independent explosion tests, the influence of different PODZ coating thickness on the anti-explosion performance was analyzed, and the reinforced concrete slab failure modes and damage characteristics were observed at different charges TNT mass and different PODZ coating thickness conditions. The results show that the main failure mode of the coated PODZ reinforced concrete slab is the crater of reinforced concrete slab on the front and the conical shape bulge of POZD coating on the back. The bulging of POZD coating is mainly due to the detachment of POZD coating from the base plate and large plastic deformation under explosion shock wave. When the shock wave load strength exceeds the ultimate tensile strength of POZD material, a small round hole shear failure is formed at the tip of coating cone, and the other areas of the coating remain intact, so that the reinforced concrete slab will not produce a large range of seismic collapse failure. Under the strong shock wave load, the POZD coating can still maintain large deformation and high plasticity, which can extend the action time and dissipation time of explosion load through its large deformation and absorb large shock wave energy, so as to restrain the concrete spall debris and improve the anti-explosion performance of steel-concrete concrete slabs. With the increase of the thickness of POZD coating, the stronger the anti-explosion ability of the plate under contact explosion, the more the critical collapse damage TNT mass. The research results can provide references for engineering application and damage assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.