Abstract

Distributed Electric Propulsion (DEP) aircraft use multiple electric motors to drive the propulsors, which gives potential benefits to aerodynamic-propulsion interaction. To investigate and quantify the aerodynamic-propulsion interaction effect of the wing section, we built a DEP demonstrator with 24 “high-lift” Electric Ducted Fans (EDFs) distributed along the wing’s trailing edge. This paper explores and compares the aero-propulsion coupling characteristics under various upstream speed, throttle, and EDF mounting surface deflection angles using a series of wind tunnel tests. We compare various lift-augmentation power conditions to the clean configuration without propulsion unit under the experiment condition of 15–25 m/s freestream flow and angles of attack from −4° to 16°. The comparison of computational results to the experimental results verifies the effectiveness of the computational fluid dynamic analysis method and the modeling method for the DEP configuration. The results show that the EDFs can produce significant lift increment and drag reduction simultaneously, which is accordant with the potential benefit of Boundary Layer Ingestion (BLI) at low airspeed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call