Abstract

To avoid the damage caused by big wind and wave in cage culture, and to solve the problem of energy supply faced by automatic breeding equipment, a new type of floating breakwater, named as Savonius double buoy breakwater (SDBB), is proposed in the paper. The floating breakwater is composed of HDPE cylindrical double buoys and horizontal axis Savonius rotors, and has the functions of wave-absorbing and energy-capturing. Based on the linear wave theory and energy conservation law, the Fourier Transform was applied to separate the two-dimensional wave frequency domain, and the energy captured by the rotors and absorbed by the floating breakwater were calculated. Experiments were conducted in a two-dimensional wave-making flume, and the transmitted waves at different wave heights and periods, the tension of mooring lines, and the rotational torque exerted on the Savonius rotor were measured. A series of performance comparison tests were also performed on the new floating breakwater and the traditional double-floating breakwater. Results show that the new floating breakwater is better than the traditional one in terms of reducing wave transmittance, and the combination of the floating breakwater with Savonius rotors can provide for marine aquaculture equipments with green power supply to a certain degree of self-sufficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call