Abstract

Bedding rock landslide is a common slope failure. The intensity of landslide is closely related to rock structure and terrain. It is important to assess landslide risk based on the geological structure. Firstly, the geological structure model of landside was set up based on the affecting factors pertinent to the analysis of landslide motion. Then, a physical experimental set up was built to measure the kinematics parameters of bedding rock landslide with different geological structures. Lastly, intensity parameters of bedding rock landslides were proposed by applying test data based on risk theories. It indicates that: (1) bedding rock landslide can be divided into three structures, i.e. similar granular, layer and blocky structure. Layer structure could be divided into three subcategory considering terrain, rock structure and slip surface; (2) Three dynamic parameters of final velocity on active-slide segment(v t ), accumulation range (L1) and impact strength (φ1) are sorted as follows: layer rock (α) > blocky rock (χ) > similar granular rock (ϕ); (3) The blocky rock (χ) has the largest of accumulation range L1, but the multilayer rock (α) has the largest of impact strength φ1. (4) The intensities within sliding mass are sorted as follows: blocky rock (χ and δ) > multilayer rock (α and β) > granular landslide (ϕ) > single layer rock (I). Intensities in the beginning of landslide deposit area are (α, β and δ) >χ>I>ϕ; Intensities on the top edge of deposit area are α>δ>χ>β>I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.