Abstract

Understanding flow patterns and their variability is important for optimal design and trouble free dense phase pneumatic conveying of pulverized coal in a horizontal tube. Employing the electrical capacitance tomography (ECT), six flow patterns were identified and utilized for quantitative analysis based on the value and distribution of cross-sectional solid concentration. The dense-phase flow patterns in the horizontal tube of the pneumatic conveying system were somehow variable even when the operating conditions were unchanged. The probability calculation results suggest changing multiple flow patterns with one or two dominant flow for each of the seven sets of experimental conveying conditions and that a finite change in the dominant flow pattern would occur with an increasing superficial gas velocity. The power spectral density (PSD) function and the Hurst exponent of the pressure signals of the pulverized coal were well correlated with its flow patterns in a horizontal tube. The PSD functions and probability density functions (PDFs) of the void fraction signals from ECT are found to be related with flow patterns and can be used to quantitatively identify flow regimes. The ECT data may therefore be utilized for monitoring the flow patterns in a horizontal tube employed for pneumatic conveying of pulverized coal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.