Abstract

The results of experimental studies of different types of cathodes—carbon-epoxy rods, carbon-epoxy capillary, edged graphite, and metal-dielectric—under the application of high-voltage pulses with an amplitude of several hundreds of kV and pulse duration of several nanoseconds are presented. The best diode performance was achieved with the edged graphite and carbon-epoxy-based cathodes characterized by uniform and fast (<1 ns) formation of explosive emission plasma spots and quasi-constant diode impedance. This result was achieved for both annular cathodes in a strong magnetic field and planar cathodes of a similar diameter (∼2 cm) with no external magnetic field. The cathodes based on carbon-epoxy rods and carbon-epoxy capillaries operating with an average current density up to 1 kA/cm2 showed insignificant erosion along 106 pulses of the generator and the generated electron beam current showed excellent reproducibility in terms of the amplitude and waveform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call