Abstract

To study the relationship between the fundamental frequencies and pre-stress values, based on experiments and numerical simulation, the simply supported was excited under different pre-stress values through using the hammering method. The collected acceleration signals in the mid-span of the beam were processed and analyzed to obtain the relationship between the fundamental frequency and pre-stress values. As shown from the analyzed result, the relationship between the fundamental frequency and pre-stress values could not be explained better based on the traditional “Euler-Bernoulli Beam Equation” theory. The fundamental frequency of the pre-stressed beam with the hammering method would be increased with the increasing pre-stress value. When the hammering method was introduced into the numerical simulation, its analysis result and the experimental result were very approximate and presented a small error, which indicated the feasibility and accuracy of the analyzed method. When the pre-stress value was a constant, the fundamental frequency of the beam would be increased with the increasing eccentric distance of the pre-stressing tendon. When other conditions were constant, the fundamental frequency of the beam presented a decreasing trend with the counterweight at the upper part of the beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.