Abstract

IntroductionLarge osseous defect remains a serious clinical problem due to the lack of sufficient blood supply and it has been proposed that this situation can be relieved by accelerating the formation of new vessels in the process of bone defect repair. The aim of this study was to develop a new type of artificial bone by transferring the VEGF gene into marrow stromal cells (MSCs) and seeding them into a porous scaffold.Material and methodsAn adenovirus vector was employed to transfer the VEGF gene into MSCs and expression of the exogenous gene was confirmed by ELISA. Next the transduced cells were seeded into a collagen I modified PLGA/TCP scaffold. The constructed new complex artificial bone was then assessed for biocompatibility in vitro and blood vessel formation and bone formation in vivo.ResultsWe found that adenovirus mediated VEGF gene transfer into MSCs sustained VEGF expression in MSCs for 3 weeks. Porous scaffold PLGA/TCP made by rapid prototyping technology exhibited improved biocompatibility resulting from crosslinking with collagen I. Furthermore, the in vivo study showed that large amounts of blood vessels were detected histologically 1 week after artificial bone implantation, and significant bone formation was detected 8 weeks after implantation.ConclusionsOur findings suggest that gene transfer of VEGF into MSCs combined with PLGA/TCP scaffold enhances bone repair in vivo by promoting vascularization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.