Abstract

We study the spatial mode content at the output of a wide-field interferometer, i.e. a nonlinear interferometer comprising two coherently-pumped spatially-multimode optical parametric amplifiers placed in sequence with a focusing element in between. This device is expected to provide a phase sensitivity below the shot-noise limit for multiple modes over a broad angular range. To reconstruct the spatial modes and their weights, we implement a simple method based on the acquisition of only intensity distributions. The eigenmode decomposition of the field is obtained through the measurement of the covariance of intensities at different spatial points. We investigate both the radial and azimuthal (orbital angular momentum) modes and show that their total number is large enough to enable applications of the interferometer in spatially-resolved phase measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.