Abstract
Recent breakthrough in search for the analogs of fundamental particles in condensed matter systems lead to experimental realizations of 3D Dirac and Weyl semimetals. Weyl state can be hosted either by non-centrosymmetric or magnetic materials and can be of the first or the second type. Several non-centrosymmetric materials have been proposed to be type-II Weyl semimetals, but in all of them the Fermi arcs between projections of multiple Weyl points either have not been observed directly or they were hardly distinguishable from the trivial surface states which significantly hinders the practical application of these materials. Here we present experimental evidence for type-II non-centrosymmetric Weyl state in TaIrTe$_4$ where it has been predicted theoretically. We find direct correspondence between ARPES spectra and calculated electronic structure both in the bulk and the surface and clearly observe the exotic surface states which support the quasi-1D Fermi arcs connecting only four Weyl points. Remarkably, these electronic states are spin-polarized in the direction along the arcs, thus highlighting TaIrTe$_4$ as a novel material with promising application potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.