Abstract

The capability to temporarily arrest the propagation of optical signals is one of the main challenges hampering the ever more widespread use of light in rapid long-distance transmission as well as all-optical on-chip signal processing or computations. To this end, flat-band structures are of particular interest, since their hallmark compact eigenstates not only allow for the localization of wave packets, but importantly, also protect their transverse profile from deterioration without the need for additional diffraction management. In this work, we experimentally demonstrate that, far from being a nuisance to be compensated, judiciously tailored loss distributions can, in fact, be the key ingredient in synthesizing such flat bands in non-Hermitian environments. We probe their emergence in the vicinity of an exceptional point and directly observe the associated compact localized modes that can be excited at arbitrary positions of the periodic lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.