Abstract

We analyze the process of a discrete-time quantum walk over 4 steps and 5 positions with linear optics elements. The quantum walk is characterized by a ballistic spread of wavepackets along 4 steps. By employing different initial coin states, we observe non-Gaussian distribution of the walkers' finial position, which characterizes a quadratic enhancement of the spread of photon wavepackets compared to a classical random walk. By introducing controllable decoherence, we observe the quantum-to-classical transmission in a quantum walk architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.