Abstract

Quantum entanglement is crucial for quantum information processing, prominently used in quantum communication, computation, and metrology. Recent studies have shifted toward high-dimensional entangled states, offering greater information capacity and enabling more complex applications. Here, we experimentally prepared a three-photon asymmetric maximally entangled state, comprising two two-dimensional photons and one four-dimensional photon. Using this state, we conducted a proof-of-principle experiment, successfully transferring a four-dimensional quantum state from two photons to another photon with fidelities ranging from 0.78 to 0.86. These results exceed theoretical limits, demonstrating genuine four-dimensional quantum state transfer. The asymmetric entangled state demonstrated here holds promise for future quantum networks as a quantum interface facilitating information transfer across quantum systems with different dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.