Abstract

We report on a discrete-time quantum walk that uses the momentum of ultra-cold rubidium-87 atoms as the walk space and two internal atomic states as the coin degree of freedom. Each step of the walk consists of a coin toss (a microwave pulse) followed by a unitary shift operator (a resonant ratchet pulse). We carry out a comprehensive experimental study on the effects of various parameters, including the strength of the shift operation, coin parameters, noise, and initialization of the system on the behavior of the walk. The walk dynamics can be well controlled in our experiment; potential applications include atom interferometry and engineering asymmetric walks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.