Abstract
In the past few decades, the search for supersolid-like phases has attracted great attention in condensed matter and ultracold atom communities. Here we experimentally demonstrate a route for realizing a superfluid stripe-phase in a spin-orbit coupled Bose-Einstein condensate by employing a weak optical lattice to induce momentum-space hopping between two spin-orbit band minima. We characterize the striped ground state as a function of lattice coupling strength and spin-orbit detuning and find good agreement with mean-field simulations. We observe coherent Rabi oscillations in momentum space between two band minima and demonstrate a long lifetime of the ground state. Our work offers an exciting new and stable experimental platform for exploring superfluid stripe-phases and their exotic excitations, which may shed light on the properties of supersolid-like states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.